Фазовая скорость, длина волны, волновое число.

ФАЗОВАЯ СКОРОСТЬ-скорость перемещения фазы волны в определ. направлении. В случае монохроматич. плоской волны вида (где А - амплитуда, j-фаза, w-круговая частота, k -волновое число, t- время, х - расстояние, отсчитываемое в направлении распространения волны) фазовые фронты или плоскости пост. фазы j=const перемещаются в пространстве вдоль л: с Ф. с. Однако в любом ином направлении ;x, составляющем с х угол a(x=xcosa), скорость перемещения фазы превышает u х, поскольку (рис.). Т. о., в отличие от волнового вектора k, Ф. с. не является векторной величиной в обычном смысле и может даже произвольно превышать скорость распространения света с. Волны с u ф>c наз. быстрыми, а с u ф

Зависимость Ф. с. от частоты со определяет дисперсию волн, что приводит к искажению формы передаваемого сигнала конечной длительности, за исключением нек-рых особых случаев, когда эти искажения компенсируются нелинейными эффектами\

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с возникающими волнами в воде от брошенного в неё камня — расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина , обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.

Получить соотношение, связывающее длину волны с фазовой скоростью ( ) и частотой( ) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний , поэтому

Волнам де Бройля также соответствует определенная длина волны. Частице с энергией Е и импульсом p, соответствуют:

·частота:

·длина волны:

где h — постоянная Планка.

Волново́е число́ (также[1] называемое пространственной частотой) — это отношение 2π радиан к длине волны:

пространственный аналог круговой частоты[2].

В одномерном случае волновому числу обычно приписывают знак минус, если волна распространяется в отрицательном направлении (против оси). В многомерном - это обычно синоним абсолютной величины волнового вектора или его компонент (несколько волновых чисел по количеству осей координат), также может быть проекцией волнового вектора на некоторое определенное выбранное направление.



Обычное обозначение[3]: .

Единица измерения — рад·м−1, физическая размерность м−1. (В системе СГС: см−1).

·В спектроскопии волновым числом часто называют просто величину, обратную длине волны (1/λ), измеряемую обычно в обратных сантиметрах (см−1). Такое определение отличается от обычного отсутствием множителя 2π.

Используется в физике, математике[4] (преобразование Фурье) и таких приложениях, как обработка изображений.

Определение: волновым числом k называется быстрота роста фазы волны φ по пространственной координате[5]:

Поскольку в большинстве случаев волновое число имеет смысл только применительно к монохроматической волне (строго монохроматической или по крайней мере почти монохроматической), производную в определении можно (для этих самых распространенных случаев) заменить на выражение с конечными разностями:

Исходя из этого можно получить разные более-менее удобные формулировки[6]:

·Волновое число есть разность фазы волны (в радианах) в один и тот же момент времени в пространственных точках на расстоянии единицы длины (одного метра).

·Волновое число есть количество пространственных периодов (горбов) волны, приходящееся на 1 метр.

·Волновое число равно числу периодов волны, укладывающихся в отрезок 2π метров.


6343587032841164.html
6343651925972086.html
    PR.RU™